On the Dα spectral radius of strongly connected digraphs
نویسندگان
چکیده
Let G be a strongly connected digraph with distance matrix D(G) and let Tr(G) the diagonal vertex transmissions of G. For any real ? [0, 1], define D?(G) as = ?Tr(G) + (1-?)D(G). The D? spectral radius is D?(G). In this paper, we first give some upper lower bounds for characterize extremal digraphs. Moreover, digraphs that are not transmission regular, bound on difference between maximum radius. Finally, obtain eigenvalues join certain regular
منابع مشابه
On spectral radius of strongly connected digraphs
It is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. In this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملon spectral radius of strongly connected digraphs
it is known that the directed cycle of order $n$ uniquely achieves the minimum spectral radius among all strongly connected digraphs of order $nge 3$. in this paper, among others, we determine the digraphs which achieve the second, the third and the fourth minimum spectral radii respectively among strongly connected digraphs of order $nge 4$.
متن کاملSpectral radius and signless Laplacian spectral radius of strongly connected digraphs
Article history: Received 15 April 2014 Accepted 5 May 2014 Available online 29 May 2014 Submitted by R. Brualdi MSC: 05C20 05C50 15A18
متن کاملThe Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs
Let −→ G be a digraph and A( −→ G) be the adjacency matrix of −→ G . Let D( −→ G) be the diagonal matrix with outdegrees of vertices of −→ G and Q( −→ G) = D( −→ G) + A( −→ G) be the signless Laplacian matrix of −→ G . The spectral radius of Q( −→ G) is called the signless Laplacian spectral radius of −→ G . In this paper, we determine the unique digraph which attains the maximum (or minimum) s...
متن کاملStrongly Connected Multivariate Digraphs
Generalizing the idea of viewing a digraph as a model of a linear map, we suggest a multi-variable analogue of a digraph, called a hydra, as a model of a multi-linear map. Walks in digraphs correspond to usual matrix multiplication while walks in hydras correspond to the tensor multiplication introduced by Robert Grone in 1987. By viewing matrix multiplication as a special case of this tensor m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2021
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2104289x